

Using Very Small Rovers to Explore the Surface of Primitive Bodies

Gregg Vane

Jet Propulsion Laboratory

California Institute of Technology

Presented at the First IPEWG Meeting
Okinawa, Japan
January 2008

Topics

- Lessons learned from mobility on Mars
- Science motivation for mobility on primitive bodies
- MUSES-CN: An example rover for missions to primitive bodies

Lessons Learned from Mars

- "Every new site we visit is like having a new mission!"
 - Refrain often heard from members of MER team
 - Assuming even only modest diversity on surfaces of primitive bodies, the same should apply
- Value to Mars exploration falls into two broad groups:
 - Ground truth for orbital measurements, eg. Spectrometers
 - New classes of measurements that can only be conducted on the surface

Primitive Body Applications: Ground Truth

- Typical core payload for primary spacecraft includes:
 - Camera
 - IR spectrometer
 - LIDAR
 - Radar
- Rover camera ground truth includes surface context to mm scale
- Rover spectrometer ground truth includes surface mineralogy and spectral diversity for "unmixing" of remote spectra
- Rover telecom system might be used for resolving surface morphology and/or topography ambiguities

Primitive Body Applications: Surface-only measurements - a few examples

- Microscope would return images at the mineral grain size
- Small APXS could return elemental composition not obtainable remotely
- Small Raman spectrometer could yield both mineralogical and organic composition information
- Micro-capillary electrophoresis instrument could identify specific organic molecules and determine their chirality
- Ground-penetrating radar might reveal near surface structure

MUSES-CN - A brief history

- NASA approved and funded a "nano-rover" for the MUSES-C (now Hyabusa) mission in 1997
- To be built at JPL
- International science team defined science requirements and key instrument performance parameters
- Substantial progress was made in three years of development
- But, nano-rover project was canceled for budgetary constraints

MUSES-C and -CN Science Objectives

MUSES C and MUSES CN Instruments and Science Objectives									
						MUSE	SES CN Instruments		
	Imager	NIS	LIDAR	XRS	Sampler	Imager	NIS	AXS	
Personnel Collaboration	NASA	NASA	NASA		NASA	ISAS	ISAS	ISAS	
	Team	Team	Team		Team	Team	Team	Team	
	Member	Member	Member		Member	Membe	Member	Member	
						r			
Science Objectives									
Determine the asteroid's global physical structure including size, shape, volume and	X		X			X			
density									
Measure the elemental and mineralogical composition of the asteroid's surface with	X	X		X	X	X	X	X	
sufficient accuracy to enable comparisons with major meteorite types									
Characterize the geology and morphology of the asteroid's surface	X	X	X			X	X		
Infer regolith and texture properties of the asteroid's surface	X	X	X			X	X		
Return asteroid surface samples to Earth for detailed elemental composition					X				
measurements									

NIS: Near Infrared Spectrometer; XRS: X-Ray Spectrometer; AXS: Alpha X-Ray Spectrometer

MUSES-CN Nano-Rover Concept

Rover Characteristic	Value	
Mass	1300 grams	
Size	14 x 14 x 6 cm	
Power Capability	2.3 W (normal incidence)	
Max. velocity,	a) 1.5 mm/ sec	
a) rolling contact	b) 10 cm/sec	
b) hopping or		
skimming		
Data rate (quoted at	4800 bits per second	
20km range to		
OMRE receiver)		

MUSES CN nano-rover. The rover has a mass of about 2.5 pounds (1300 grams) and is about 14x14x6 cm in size.

MUSES-CN Nano-Rover Mechanical

MUSES-CN Camera and Spectrometer

Camera and Spectrometer Performance

 Key characteristics to be excerpted from Ross, 2000 paper that was cleared for presentation at international meeting

MUSES-CN Hardware Development Status

The Future

- Work completed on the MUSES-CN nano-rover provides an existence proof that such a capability could be developed for spaceflight
- MUSES-CN was based on Mars Pathfinder Sojourner experience but we now have extensive MER and MSL experience and knowledge
- All MUSES-CN drawings, hardward and software developed prior to cancelation exist and could be used
- Next steps would be:
 - 1. Define science objectives
 - 2. Define overall payload mass and volume constraints on a rover system including deployment device
 - 3. Revisit existing designs, H/W and S/W in light of MER and MSL knowledge
 - 4. Revisit science payload